Different classes of proteoglycans contribute to the attachment of Borrelia burgdorferi to cultured endothelial and brain cells.

نویسندگان

  • J M Leong
  • H Wang
  • L Magoun
  • J A Field
  • P E Morrissey
  • D Robbins
  • J B Tatro
  • J Coburn
  • N Parveen
چکیده

The Lyme disease spirochete, Borrelia burgdorferi, infects multiple tissues, such as the heart, joint, skin, and nervous system and has been shown to recognize heparan sulfate and dermatan sulfate proteoglycans. In this study, we examined the contribution of different classes of proteoglycans to the attachment of the infectious B. burgdorferi strain N40 to several immortalized cell lines and primary cultured cells, including endothelial cells and brain cells. Bacterial attachment was inhibited by exogenous proteoglycans or by treatment of host cells with inhibitors of proteoglycan synthesis or sulfation, indicating that proteoglycans play a critical role in bacterial binding to diverse cell types. Binding to primary bovine capillary endothelial cells or a human endothelial cell line was also inhibited by digestion with heparinase or heparitinase but not with chondroitinase ABC. In contrast, binding to glial cell-enriched brain cell cultures or to a neuronal cell line was inhibited by all three lyases. Binding of strain N40 to immobilized heparin could be completely inhibited by dermatan sulfate, and conversely, binding to dermatan sulfate could be completely blocked by heparin. As measured by 50% inhibitory dose, heparin was a better inhibitor of binding than dermatan sulfate, regardless of whether the substrate was heparin or dermatan sulfate. These results are consistent with the hypotheses that the species of proteoglycans recognized by B. burgdorferi vary with cell type and that bacterial recognition of different proteoglycans is mediated by the same bacterial molecule(s).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Borrelia burgdorferi bind to epithelial cell proteoglycans.

Borrelia burgdorferi adhere to mammalian cells in vitro but neither the ligand(s) nor the receptor(s) has (have) been clearly established. Using an in vitro attachment-inhibition assay, a B. burgdorferi attachment mechanism has been identified. Heparin, heparan sulfate, and dermatan sulfate reduced the attachment of virulent B. burgdorferi strain 297 to HeLa cells by approximately 60%. In addit...

متن کامل

Expression and Purification of Recombinant Outer Surface Protein D of Borrelia burgdorferi

To carry out the immunological experiments on the serum of Multiple Sclerosis (MS) patients, based on a correlation between Borrelia burgdorferi infection and contracting MS autoimmune disease the outer surface protein D (OspD) of the bacterium was expressed and purified. A clone containing the OspD gene in pET11a expression vector under the control of T7 promoter was transformed to the bacteri...

متن کامل

Identification of Two Epitopes on the Outer Surface Protein A of the Lyme Disease Spirochete Borrelia burgdorferi

A murine IgM monoclonal antibody (MA-2C6) with κ-light chains directed against an antigenic determinant of outer surface protein A (OspA) of the Lyme disease spirochete, Borreliaburgdorferi, is produced. This antibody could bind specifically to OspA antigen of several isolates of B. burgdorferi, but not to the non-Lyme disease bacteria such as T. pallidum and B. hermsii. Antibody MA-2C6 was pur...

متن کامل

Analysis of Borrelia burgdorferi Surface Proteins as Determinants in Establishing Host Cell Interactions

Borrelia burgdorferi infection causes Lyme borreliosis in humans, a condition which can involve a systemic spread of the organism to colonize various tissues and organs. If the infection is left untreated by antimicrobials, it can lead to manifestations including, arthritis, carditis, and/or neurological problems. Identification and characterization of B. burgdorferi outer membrane proteins tha...

متن کامل

Enhanced Adhesion and OspC Protein Synthesis of the Lyme Disease Spirochete Borrelia Burgdorferi Cultivated in a Host-Derived Tissue Co-Culture System.

BACKGROUND The adhesion process of Borrelia burgdorferi to susceptible host cell has not yet been completely understood regarding the function of OspA, OspB and OspC proteins and a conflict exists in the infection process. AIMS The adhesion rates of pathogenic (low BSK medium passaged or susceptible rat joint tissue co-cultivated) or non-pathogenic Borrelia burgdorferi (high BSK medium passag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 66 3  شماره 

صفحات  -

تاریخ انتشار 1998